Process Performance Monitoring and Degradation Analysis
نویسنده
چکیده
The global power sector is facing a number of issues, but the most fundamental challenge is meeting the rapidly growing demand for energy services in a sustainable way. This challenge is further compounded by the today’s volatile market rising fuel costs, increased environmental regulations, etc. Plant owners are challenged to prepare for the impact of future fuel price increases and carbon taxes and consider the value of environmental stewardship. The increasing competition in the electricity sector has also had significant implications for plant operation, which requires thinking in strategic and technical ways at the same time. Management focus in the past decade has been on reducing forced outage rates, with less attention paid to thermal performance. Energy-intensive facilities seeking to maximize plant performance and profitability recognize the critical importance of performance monitoring and optimization to their survival in a competitive world. It means getting more out of their machinery and facilities. This can be accomplished through effective heat rate monitoring and maintenance activities. At present, it becomes necessary to find an uncomplicated solution assisting thermal performance engineers in identifying and investigating the cause of megawatt (MW) losses as well as in proposing new ways to increase MW output. In this field of research and engineering, traditional system performance test codes [1] conduct procedures for acceptance testing based on the fundamental principles of the First Law of Thermodynamics. Many scholars have devoted to exergy-based research for the thermoeconomic diagnosis of energy utility systems [2-8], that is, those approaches based on the Second Law of Thermodynamics. In addition, some artificial intelligence model based methods [9-11] are also investigated for the online performance monitoring of power plant. However, some shortcomings also exist for the three kinds of methodologies. As is well known, performance test codes need sufficient test conditions to be fulfilled. It is difficult for continuous online monitoring condition to satisfy such rigorous requirements. Many artificial intelligence based methods may work well on data extensive conditions, but can’t explain the results explicitly. Exergy analysis is very valuable in locating the irreversibilities inside the processes, nevertheless it needs to be popularized among engineers. In this chapter, a novel method is presented, which is deduced from the First Law of Thermodynamics and is very clear and comprehensible for maintenance engineers and operators to understand and make use of. It can also sufficiently complement test codes. The novelty mainly lies in as followings: first, the primary steam flow is calculated indirectly by
منابع مشابه
Online Monitoring and Fault Diagnosis of Multivariate-attribute Process Mean Using Neural Networks and Discriminant Analysis Technique
In some statistical process control applications, the process data are not Normally distributed and characterized by the combination of both variable and attributes quality characteristics. Despite different methods which are proposed separately for monitoring multivariate and multi-attribute processes, only few methods are available in the literature for monitoring multivariate-attribute proce...
متن کاملPreventing Key Performance Indicators Violations Based on Proactive Runtime Adaptation in Service Oriented Environment
Key Performance Indicator (KPI) is a type of performance measurement that evaluates the success of an organization or a partial activity in which it engages. If during the running process instance the monitoring results show that the KPIs do not reach their target values, then the influential factors should be identified, and the appropriate adaptation strategies should be performed to prevent ...
متن کاملA DMAIC approach for process capability improvement an engine crankshaft manufacturing process
The define–measure–analyze–improve–control (DMAIC) approach is a five-strata approach, namely DMAIC. This approach is the scientific approach for reducing the deviations and improving the capability levels of the manufacturing processes. The present work elaborates on DMAIC approach applied in reducing the process variations of the stub-end-hole boring operation of the manufacture of cra...
متن کاملPreparation of Perovskite Nanocomposites and Photochemical Degradation Kinetics of Acid Yellow 199
In this study PbZrO3 was prepared as a matrix by the sol-gel process and is characterized by XRD and SEM techniques. The particle size of the synthesized nanocomposite is evaluated about 43 nm. The Lead Zirconate is then doped with Ce3+/TiO2 in different ratios. Nanocomposites are added in the reaction in a photoreactor with a pollutant (an Azo dye) and as a result the degradation percentage is...
متن کاملProcess capability improvement of an engine connecting rod machining process
Statistical process control is an excellent quality assurance tool to improve the quality of manufacture and ultimately scores on end-customer satisfaction. SPC uses process monitoring charts to record the key quality characteristics (KQCs) of the component in manufacture. This paper elaborates on one such KQC of the manufacturing of a connecting rod of an internal combustion engine. Here th...
متن کاملPerformance evaluation of electroproxone process in degradation of ceftriaxone pharmaceutical compound from synthetic solution
Background and Objective: Electroproxone process is a combination of ozonation process and electrolysis in which the production of hydroxyl radical and ultimately degradation of a pollutant occurs. The aim of this study was to estimate the E-Proxone process in removing ceftriaxone from a synthetic solution. Materials and Methods: In this experimental study, a semi-continuous reactor equipped w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012